Multi-Level Halftoning by IGS Quantization

نویسنده

  • Tadahiko Kimoto
چکیده

Improved gray-scale (IGS) quantization is a known method for re-quantizing digital gray-scale images for data compression while producing halftones by adding a level of randomness to improve visual quality of the resultant images. In this paper, first, analyzing the IGS quantizing operations reveals the capability of conserving a DC signal level of a source image through the quantization. Then, a complete procedure for producing a multi-level halftone image by IGS quantization that can achieve the DC conservation is presented. Also, the procedure uses the scanning of source pixels in an order such that geometric patterns can be prevented from occurring in the resulting halftone image. Next, the performance of the multi-level IGS halftoning is evaluated by experiments conducted on 8-bit gray-scale test images in comparison with the halftoning by error diffusion. The experimental result demonstrates that a signal level to be quantized in the IGS halftoning varies more randomly than that in the error diffusion halftoning, but not entirely randomly. Also, visual quality of the resulting halftone images was measured by subjective evaluations of viewers. The result indicates that for 3 or more-bit, in other words, 8 or more-level halftones, the IGS halftoning achieves image quality comparable to that by the error diffusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi - Level Colour Halftoning Algorithms 1

Methods for the halftoning of images on multi-level printing devices such as multi-level inkjet printers are presented. Due to the relatively large size of single droplets, halftoning algorithms are still needed. However, since halftoning occurs between the basic levels attainable by printing one, two or several droplets at the same position, artefacts are less visible than in equal resolution ...

متن کامل

Color Error-Diffusion Halftoning

Grayscale halftoning converts a continuous-tone image (e.g., 8 bits per pixel) to a lower resolution (e.g., 1 bit per pixel) for printing or display. Grayscale halftoning by error diffusion uses feedback to shape the quantization noise into high frequencies where the human visual system (HVS) is least sensitive. In color halftoning, the application of grayscale error-diffusion methods to the in...

متن کامل

Multi-level Colour Halftoning Algorithms

Methods for the halftoning of images on multi-level printing devices such as multi-level inkjet printers are presented. Due to the relatively large size of single droplets, halftoning algorithms are still needed. However, since halftoning occurs between the basic levels attainable by printing one, two or several droplets at the same position, artefacts are less visible than in equal resolution ...

متن کامل

Adaptive threshold modulation for error diffusion halftoning

Grayscale digital image halftoning quantizes each pixel to one bit. In error diffusion halftoning, the quantization error at each pixel is filtered and fed back to the input in order to diffuse the quantization error among the neighboring grayscale pixels. Error diffusion introduces nonlinear distortion (directional artifacts), linear distortion (sharpening), and additive noise. Threshold modul...

متن کامل

Model-Based Halftoning for Color Image Segmentation

Grouping algorithms based on histograms over measured image features have very successfully been applied to textured image segmentation [2, 11, 6]. However, the competing goals of statistical estimation significance demanding few quantization levels versus the necessary richness in representation often prevent a successful application for the color cue, since quantization may result in contouri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013